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Abstract The multifractality of graphite and amorphous carbon fractal clusters with distinct 
morphologies was studied by analysing lhe growth probability distribution (GPD) usittg the 
harmonic measure. The results showed that the multifractalily of lhe graphite clusters is similar to 
that of diff~usion-limitedaggregation (DLA), and that a singleghare lrnnrition to non-mullifractals 
occurred at a negative scaling factor, 8 ,  However, two critical points at which lhe multihrtality 
was broken down were observed in the GPD of the multifractal-like amorphous carbon clusters. 
Such a multifmctal behaviour was also found in the GPD of dissolution patterns generated by 
etching of porous materials, and the CPD of magnetic-microsphere aggregates, which suggests 
that the behaviour is common to many fractal clusters 

1. Introduction 

Insights into the formation of fractal clusters can often be gained by characterizing their 
multifractal properties [1-2]. Multifractality of a fractal is described by the fractal measure 
of its growth pmbabiliry distribution (GPD) [ 1-31, Recent multifractal 14-12] analyses 
of dimion-limited uggregution (DLA) showed that the multifractal behaviour of a DLA 
cluster becomes size dependent below a critical scaling factor, or in the thermodynamics 
terminology, below a critical inverse temperature (pc) [4,5]. The phenomenon is termed 
a phase transition to non-multifractals. In short, above pc, the moment expansion shows 
an infinite hierarchy of phases which is the characteristic of multifractals; but below it, a 
single phase is present and the free energy [4,5] ( F ( p ) )  of the system is no longer size 
independent. Such a phase transition can easily be seen in thefree energy spectra of a DLA 
system either by sampling DLA clusters of different sizes, or by monitoring a single DLA 
cluster at different growth stages [4,5]. The physics of the phase transition is attributed to 
the fact that the multifractal properties of a DLA at negative p are dominated by its ‘fjords’, 
where the growth probability approaches a minimum value. During the evolution of a DLA 
cluster, the fjords become more and more heavily screened from growth. The screening 
eventually leads to the breakdown of the multifractality of the DLA cluster. 

For a real physical system, especially for fractal clusters observed in thin solid films 
[13-161, on which this paper is based, an infinite scaling regime cannot usually be found 
experimentally for either the imperfection of the detection tools or the intrinsic cut-off in 
the system [17]. In addition, the scaling regime for the fractal clusters observed in most of 
the thin solid films was limited by the linear size of the clusters. Nonetheless, it is expected 
that more geometrical information of the cluster can be revealed and be distinguished using 
the multifractal approach than using the description of a single fractal dimension. In this 
paper, we discuss the multifractality of fractal clusters of two distinct morphologies and the 
corresponding geometrical properties. 
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2. Experimental details 

The samples employed in the present study were ultra-thin films consisting of 10-20 nm 
thick graphite clusters mosaiced or inlaid with less than 10 nm thick amorphous carbon. The 
films were prepared by filament-assisted chemical vapour deposition. In this experiment, a 
tungsten filament was heated to about 2000 "C to decompose a 0.5% methandhydrogen gas 
mixture above a silicon substrate at 1000 "C. After the deposition, the silicon substrate was 
removed by etching in an HFMNO, solution and the thin carbon film was floated onto a 
typical 3 mm grid for transmission electron microscopic (TEM) analysis. An Hitachi H800 
microscope with an electron beam of 150 keV was used for the structural analysis. An 
example of the TEM image of this sample structure is shown in figure ](a). Secondary 
electron microscopic analysis of the region of the same carbon foil underneath the locations 
of the grid lines showed that many of secondary electrons emitted from the grid were 
transmitted through the foil. Therefore, the graphite thickness was estimated to be 10-  
20 nm. The results from the transmission electron diffraction in a selected area mode, as 
shown in the inset of figure ](a), indicated that the graphite was (0001) oriented. Since the 
cluster size is much larger than its thickness, the growth was almost two dimensional along 
the basal plane. Diffraction analysis also showed that the regions between the graphite 
clusters were amorphous. Furthermore, x-ray photoemission spectroscopic analysis of the 
foil showed the presence of only carbon; hence these regions were identified as amorphous 
carbon. The brightness contrast between the graphite and the amorphous carbon suggests 
that the amorphous carbon was thinner than IO nm. Although the present analysis could 
not determine whether the graphite clusters were mosaiced with or inlaid on amorphous 
carbon, the two phases were definitely joined, otherwise the graphite clusters would have 
fallen apart. In the following analysis, a mosaic structure was assumed. 
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3. Analysis approach 

In experimental measurement of the multifrnctality of a fractal cluster, it is essential to 
measure its GPD. Since monitoring the growth of a fractal cluster in solid state with time 
evolution to determine GPD directly ('natural measure') is often technically difficult, an 
alternative approach (harmonic measure) previously proposed by Hayakawa er a[ [IS] is 
frequently employed. Both these two measures were applied to calculate the multifractal 
properties of an experimentally grown fractal-like cluster, and the validity of using the 
harmonic measure when the 'natural measure' is not available was shown by Ohta and 
Honjo [19]. The principle of the harmonic measure rests on the fact that random diffusion 
satisfies the Laplace equation and that the growth probability, pi, of the fractal cluster at 
time t and a growing site ri is proportional to the Laplacian field strength (lVn@(ri,  t)I), 
i.e., pi(ri, f) M [Vnq5(rj, t ) l .  In other words, the Laplacian potential distribution of the 
cluster probes the geometry of the cluster and correlates it to the kinetic properties of the 
cluster. Therefore, the GPD can be recovered from the analysis of a static cluster, which can 
then be used to calculate the multifractal properties of  the cluster. In practice, since only 
static clusters are analysed, the system size cannot be used directly as the scaling factor. 
Instead, the GPD is divided into subsets. Each subset lies within a box of length b. and the 
measure of each subset is pi(b).  This is done by covering the GPD with a grid of boxes of 
length b, then measuring the sum of the occupied sites inside the box 13, 121. For an object 
with self-similarity, variation of the box size b is equivalent to variation of the system size 
L. Therefore, the multifractality of the cluster can be described by the probability measure 
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Figure 1. A TEEM image (~5000) uf (4 the mosaic fractal-like pattem used in the present study, 
(bj a typical graphite cluster, and (c) a typical amorphous cluster. (The dark ares is contributed 
by graphite and the bright m a  by amorphous carbon.) 

pi(b)  on the condition that b << L.  In this approach, it is convenient to define an effective 
size, 1 = L / b .  Theoretically, the multifractal formalism is established at the limit I + M 

(either L + 03 or b + 0). In practice, the limits of b can be set at an experimental cut-08 
where pi(b)  is trivial, and such a b  will not introduce new breakdowns in the corresponding 
measure 1201. 

As discussed above, it is expected that the harmonic measure is not universal for 
retrieving kinetic information of distinct fractal clusters formed wirh diverse kinetics. 
For example, it cannot be used to recover the real GPD of fractal clusters formed via 
cluster-cluster aggregation. Nevertheless, the approach is valid for probing the geometrical 
properties of static fractal clusters, since the growth probability of the probing particle at 
the surface of each distinct cluster is uniquely determined by the local Laplace field and 
hence the geometry of the cluster itself. When it happens, the simulated GPD would be the 
‘nominal’ GPD which carries only the geometrical information of the cluster. 

In the actual analysis, a total of 27 clusters were selected from different parts of the films 
for analysis of each morphology. Typical clusters of graphite and amorphous carbon are 
shown in figure l (b)  and ( c ) .  respectively. As we have reported in a previous publication 
[16], the fractal dimensions of individual clusters grown in the same solid film depended on 
the local conditions and its multifractal spectra could therefore be different from one another. 
In order to eliminate such an error in later averaging, the 27 clusters for analysis were chosen 
following the condition that the difference between the measured fractal dimension of each 
chosen cluster and that of the average was less than rtO.10. 

The TEM images of the observed clusters were digitized with a Mackintosh computer 



7090 

system and a Hewlett Packard laser scanner with a 300 x 300 pixel matrix and an appropriate 
conhast threshold to separate pixels belonging to a cluster from those in the background. 
The discrete Laplace equation of the two-dimensional square mairix was solved with the 
free-boundary condition by the relaxation method. The calculated GPD was then covered 
by a grid of boxes of length b on the lattice. The measure pi(&) was then obtained by 
counting the occupied pixels within each box (Ebox pi) and normalized with Ei pi(&). 
The ‘partition function’, Z ( B ,  I), was estimated by [3-5] 
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Z ( P ,  1 )  5 z ( p i ( b ) ) ’  2 A(B,  (1) 

where ,3 is the multifractal scaling factor, or in the equivalent thermodynamics terminology, 
the inverse temperature. The free-energy spectrum, F ( p ,  I) was then calculated by the 
following equation: 

F ( p )  = f + C O  lim F ( p , I )  iinin[-logZ(fl. I)/ logb].  (2) 

Finally, the generalized fractal dimension was obtained by D ( p )  = F(B)/( ,9  - I). 
The morphology of the cluster shown in figure I (b)  is similar to those of the computer- 

simulated fractal clusters [Zl], while that of the cluster shown in figure I(c) is similar to 
that of the ‘chemical dissolution pattern’ reported by Daccord [22]. Several factors, such 
as diffusion, successive nucleation, growth of the crystallites at the interface, and diffusion- 
limited branch enlargement, may have been involved in such non-equilibrium solid-state 
processes 123,241. In the following discussion, only the geometrical characteristics of the 
clusters are addressed. 

4. Results and discussion 

Figure 2 shows the scaling regime for the two clusters shown in figure I(b) and (c ) ,  
respectively. The data shown were from the box-counting approach, N K b-D‘a), and 
the end of linearity of the data for the two different clusters is indicated by b,, and bk%, 
respectively. In these two cases, L/b,,  was about 2.24 for graphite clusters and about 
1.78 for amorphous carbon clusters. From the data, the D(0)  for the graphite clusters 
(figure I@)) was determined to be 1.68 & 0.08 which is only marginally smaller than that 
of a DLA cluster. As such, the result suggests that the geometry of the graphite cluster 
can be approximated by DLA with a sticking probability of slightly less than unity 1131. 
The breakdown in the multifractal free-energy spectrum of a DLA cluster below a negative 
inverse temperature was also observed, as shown in figure 3(a). The breakdown can be 
further manifested by defining the following free-energy fluctuation function: 

A@@) = F ( B ,  Imid - F ( B ,  l m d  (3) 

where and L f i n  are, respectively, the maximum and minimum box size used in this 
study. The results (figure 3(b)) clearly show that such a free-energy fluctuation was near 
zero when B > pc N -1. In the regime of B < 0, the free energy is dominated by 
the minimum growth probability, pmin. or the E,, (Ema = - In pdn/ Inl) of the cluster. 
Therefore, determination of the scaling forms of the minimum growth probability bears 
some importance when the multifractal breaks down into a single phase. It has been shown 
that the dependence of pfin on L may take an exponential or power-law form [5-12]. In the 
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present study, the E,, measured for the graphite clusters fitted well into the relation [5,6] 
E,, c( l2/1nf (with a correlation coefficient of 0.985 f0.021 for all the clusters sampled). 
This result again has been shown to be the characteristics of a DLA cluster. These results 
are qualitatively the same as those obtained from DLA clusters of different sizes. Such an 
agreement confirms the validity of the present approach in using the Laplacian field strength 
for the determination of GPDs and using the box size as the multifractal scaling factor for 
measuring multifractal properties. 

’ ‘ O  0=1.41 

0.5 1.0 1.5 2.0 2.5 3 . 0  3.5 4.0 4.5 

In b 
Figure 2. Fractal dimensions for the graphite cluster shown in figure I(b) (filled circles) and 
the amorphous cluster shown in figure l(c) (open circles). the data were obtained using the 
box-counting approach by varying the box size b. 

To examine whether the above results were due to statistic fluctuations, averaging 
was performed among the clusters with the same morphology and fractal dimensions 
(Di(0) - &O) c ztO.1). The results are listed in fable 1, which clearly shows that the 
divergence of the multifractal spectra of these clusters is intrinsic. 

In contrast to the graphite clusters, the multifractal analysis of a typical amorphous 
carbon cluster (figure l(c)) showed that the fractal dimension was 1.41 f 0.04, which is 
much smaller than that of a DLA cluster. It is more interesting that the free-energy spectrum, 
as shown in figure 4(a) ,  diverged not only below a negative B but also above a positive 
p. The two transition critical points B; and B,’ in the free-energy spectra are more clearly 
seen in the free-energy-fluctuation plot (figure 4(b))  from which B; = - 1  and p: = 3 
can be determined. The breakdown of multifractality above a positive b,  a ‘temperature 
domain’ where the ‘tips’ of a DLA-like cluster w i U  dominate the multifractal properties of 
the cluster, can be understood by a qualitative examination of the cluster geometry as shown 
in figure I(c). The amorphous carbon cluster, in comparison to the graphite cluster, is of an 
open structure with less tip splitting. Only large fingers have been developed which implies 
a screening of the development of small fingers (the ‘tips’). In addition, the dependence of 
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5 0 ,  . . , . . , 

P P 
Figure 3. Analysis of the free energy of the graphite cluster: (a) the freeenergy spectra with 
varying box sizes (lmw = l#/2, h = 102/3. 1, = 10214. 18 = 102/5, I s  = 102/7, and 
I,;. = L02/ll); (b )  the freeenergy fluchation with respect to 1. 

Table 1. List of the multifnctal spectrum parameters avenged over different clustm. 

B =  -40 B = +40 B; S: 

I 97 0 -1 - 

averaged 

Clusters type I (D(0)  2 1.68) 

10 86 0 -0.9 - 
20 92 0 -1  - 
27 90 0 -0.9 - 
Cluster type II ( D ( 0 )  r. 1.41) 

I 58 6.6 -1.0 3.0 
IO so 5.3 -0.8 2.4 
20 46 5.8 -0.9 2.9 
21 49 6. I - 1 . 1  2.7 

the E,, on 1 of the amorphous carbon cluster at a negative temperature was found to have 
the following scaling form: 

E,, o( P/(InL)2 (4) 

or p,,,jn a exp(-Al2/In1), where A is a proportionality constant As such, E,, of the 
amorphous carbon cluster behaved quite differently from E ,  of the graphite cluster. The 
analysis of the dependence on 1 of the growth probability of the amorphous carbon cluster at 
p > p,' showed that p -  a exp(-Al*) or E,. a 12/1n1. Hence, E d n  of the amorphous 
carbon cluster had a similar behaviour to that of E ,  of the graphite cluster. In other 
words, the screening of the 'tips' of the amorphous carbon clusters from further growths is 
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similar to the screening of the 'fjords' of the graphite clusters. In figure I@), the screening 
of the 'tips' of the amorphous carbon clusters is illustrated by the large fingers and few 
tip splittings of the fingers. Similar effects of averaging over different clusters can also be 
found in table 1. 
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Figure 4. Analysis of the free energy of the amorphous carbon cluster: (a) the free-energy 
spectra with varying box sizes (labelling scheme the same as that in figure 3); (b)  the free- 
energy fluctuation with respect to 1. 

As we have mentioned earlier in this paper, it is difficult to obtain the kinetics for the 
formation of the amorphous carbon clusters by simply comparing the results to those from 
the existing models. For example, the less frequent tip splitting and enlarged branches 
of the 'chemical dissolution pattern' in  porous media were modelled by Daccord using a 
'cumulative DLA model'. The simulated results recovered the observed morphology of the 
'dissolution patterns' and a low fractal dimension of 1.43 was found. However, such a 
process is at least not experimentally evident to have been involved in the formation of 
the clusters in the present observations, although the morphology and the fractal dimension 
were similar. 

The implication of the fact that the free energy of the amorphous carbon cluster is size 
independent only in a limited range of scaling factor ,9 goes beyond the nature of the cluster 
production in the present study. Similar multifractal properties are also expected from other 
multifractal-like clusters. For example, since the fractal dimension of the amorphous carbon 
is very close to that of a dissolution pattern generated from etching a porous material, 
multifractal analysis was applied to such a pattern previously reported by Daccord [22]. 
Similarly to the results on the amorphous carbon cluster, the dissolution pattern gave a size- 
independent free energy only in a narrow B range with a breakdown at both negative and 
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positive j3. In addition, the lack of tip splitting in the growth of the iron-oxide magnetic- 
microsphere aggregates [I61 also results in the divergence of their multifractal spectra at 
both negative and positive B. 
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5. Conclusions 

In conclusion, we show that the geometry of the two kinds of cluster with distinct 
morphologies can be clearly described by their multifractality. Divergency of the multifractal 
spectra in both positive and negative regions of @ was found for the carbon clusters discussed 
here. 
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